Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Plant ; 176(2): e14271, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38566130

RESUMO

Seed dormancy is an important life history state in which intact viable seeds delay or prevent germination under suitable conditions. Ascorbic acid (AsA) acts as a small molecule antioxidant, and breaking seed dormancy and promoting subsequent growth are among its numerous functions. In this study, a germination test using Pyrus betulifolia seeds treated with exogenous AsA or AsA synthesis inhibitor lycorine (Lyc) and water absorption was conducted. The results indicated that AsA released dormancy and increased germination and 20 mmol L-1 AsA promoted cell division, whereas Lyc reduced germination. Seed germination showed typical three phases of water absorption; and seeds at five key time points were sampled for transcriptome analysis. It revealed that multiple pathways were involved in breaking dormancy and promoting germination through transcriptome data, and 12 differentially expressed genes (DEGs) related to the metabolism and signal transduction of abscisic acid (ABA) and gibberellins (GA) were verified by subsequent RT-qPCR. For metabolites, exogenous AsA increased endogenous AsA and GA3 but reduced ABA and the ABA/GA3 ratio. In addition, three genes regulating ABA synthesis were downregulated by AsA, while five genes mediating ABA degradation were upregulated. Taken together, AsA regulates the pathways associated with ABA and GA synthesis, catalysis, and signal transduction, with subsequent reduction in ABA and increase in GA and further the balance of ABA/GA, ultimately releasing dormancy and promoting germination.


Assuntos
Giberelinas , Pyrus , Giberelinas/farmacologia , Giberelinas/metabolismo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Germinação , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Pyrus/metabolismo , Ácido Ascórbico/metabolismo , Dormência de Plantas/genética , Sementes , Água/metabolismo , Regulação da Expressão Gênica de Plantas
2.
J Plant Physiol ; 289: 154092, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37716315

RESUMO

Graphene, one of the emerging carbon nanomaterials, has many advantages and applications. Salinity stress seriously affects ecology and agroforestry worldwide. The effects of graphene on alfalfa under salinity stress were investigated. The results indicated that graphene promoted alfalfa growth under non-salinity stress but caused some degree of damage to root cells and leaf parameters. Graphene used in salinity stress had a positive effect on growth parameters, chlorophyll, photosynthetic gas parameters, stomatal opening, ion balance, osmotic homeostasis, cell membrane integrity and antioxidant system, while it decreased Na+, lipid peroxidation and reactive oxygen species levels. Correlation analysis revealed that most of the parameters were significantly correlated; and principal component analysis indicated that the first two dimensions (78.1% and 4.1%) explained 82.2% of the total variability, and the majority of them exceeded the average contribution. Additionally, Gene Ontology functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes signaling pathway enrichment analysis showed that there were numerous differentially expressed genes and pathways to regulate alfalfa responding to salinity stress. Taken together, the findings reveal that graphene does not enter the plant, but improves the properties and adsorption of soil to enhance salt tolerance and seedling growth of alfalfa through morphological, physiological, biochemical, and transcriptomic aspects. Furthermore, this study provides a reference for the application of graphene to improve soil environment and agricultural production.


Assuntos
Grafite , Nanopartículas , Medicago sativa/metabolismo , Salinidade , Estresse Salino , Fotossíntese , Solo
3.
J Hazard Mater ; 443(Pt B): 130309, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36356523

RESUMO

Eco-toxicological estimation of cadmium induced damages by morpho-physiological and cellular response could be an insightful strategy to alleviate negative impact of Cd in agricultural crops. The current study revealed novel patterns of Cd-bioaccumulation and cellular mechanism opted by alfalfa to acquire Cd tolerance under various soil applied zinc oxide nanoparticles (nZnO) doses (0, 30, 60, 90 mg kg-1), combined with 2% biochar (BC). Herein, the potential impact of these soil amendments was justified by decreased Cd and increased Zn-bioaccumulation into roots by 38 % and 48 % and shoots by 51 % and 72 % respectively, with co-exposure of nZnO with BC. As, the transmission electron microscopy (TEM) and scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS) ultrastructural observations confirmed that Cd-exposure induced stomatal closure, and caused damage to roots and leaves ultrastructure as compared to the control group. On the contrary, the damages to the above-mentioned traits were reversed by a higher nZnO dose, and the impact was further aggravated by adding BC along nZnO. Furthermore, higher nZnO and BC levels efficiently alleviated the Cd-mediated reductions in alfalfa biomass, antioxidant enzymatic response, and gaseous exchange traits than control. Overall, soil application of 90 mg kg-1 nZnO with BC (2 %) was impactful in averting Cd stress damages and ensuring better plant performance. Thereby, applying soil nZnO and BC emerge as promising green remediation techniques to enhance crop tolerance in Cd-polluted soil.


Assuntos
Poluentes do Solo , Óxido de Zinco , Cádmio/química , Medicago sativa , Óxido de Zinco/toxicidade , Óxido de Zinco/química , Poluentes do Solo/análise , Solo/química
4.
Ecotoxicol Environ Saf ; 242: 113938, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35926408

RESUMO

Salinity is one of the most common factors affecting alfalfa (Medicago sativa L.), and NaCl is one of the main factors of salinity stress which can cause heavy losses in agricultural production in the world. The application of exogenous melatonin (MT) plays a major role in numerous plants against various stress environments. The effects of exogenous MT on the NaCl tolerance of alfalfa treated with the control, 100 µmol L-1 MT, 150 mmol L-1 NaCl, or 150 mmol L-1 NaCl+ 100 µmol L-1 MT were investigated. The results showed that MT increased growth parameters, inhibited chlorophyll degradation and promoted photosynthetic gas exchange parameters (photosynthetic rate, conductance to H2O, and transpiration rate) and stomatal opening under NaCl stress. Osmotic regulation substances such as soluble sugar, proline and glycine betaine were the highest in the NaCl treatment and the second in the NaCl+MT treatment. Nitrogen, phosphorus, potassium, calcium and magnesium were reduced and sodium was increased by NaCl, whereas these levels were reversed by the NaCl+MT treatment. MT inhibited cell membrane imperfection, lipid peroxidation and reactive oxygen species (ROS) accumulation caused by NaCl stress. MT up-regulated the gene expression and activity of antioxidant enzymes and increased the content of antioxidant non-enzyme substances to scavenge excessive ROS in NaCl-treated plants. In addition, all indicators interacted with each other to a certain extent and could be grouped according to the relative values. All variables were divided into PC 1 (89.2 %) and PC 2 (4 %). They were clustered into two categories with opposite effects, and most of them were significant variables. Hence, these findings reveal that exogenous MT alleviates the inhibitory effects of NaCl stress on photosynthesis, stomata opening, osmotic adjustment, ion balance and redox homeostasis, enhancing tolerance and growth of alfalfa. Furthermore, it suggests that MT could be implemented to improve the NaCl tolerance of alfalfa.


Assuntos
Medicago sativa , Melatonina , Antioxidantes/metabolismo , Medicago sativa/metabolismo , Melatonina/metabolismo , Melatonina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Cloreto de Sódio/metabolismo , Cloreto de Sódio/toxicidade
5.
Environ Pollut ; 303: 119069, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35276246

RESUMO

Global efforts are in rapid progress to tackle the emerging conundrum of climate change-induced heat stress in grassland ecosystems. Zinc oxide nanoparticles (n-ZnO) are known to play a crucial role in plants' abiotic stress regulation, but its response in alfalfa against heat stress has not been explored. This study aimed at assessing the effects of n-ZnO on alfalfa under heat stress by various morpho-physiological and cellular approaches. Five-week-old alfalfa seedlings were subjected to foliar application of n-ZnO as a pretreatment before the onset of heat stress (BHS) to evaluate its effect on heat tolerance, and as a post-treatment after heat stress (AHS) to evaluate recovery efficiency. In vitro studies on Zn release from n-ZnO by Inductively coupled plasma mass spectroscopy (ICPMS) disclosed that the particle uptake and Zn release were concentration dependent. The uptake and translocation of n-ZnO examined by transmission electron microscope (TEM) reveling showed that n-ZnO was primarily localized in the vacuoles and chloroplasts. TEM images showed that ultrastructural modifications to chloroplast, mitochondria, and cell wall were reversible by highest dose of n-ZnO applied before heat stress, and damages to these organelles were not recoverable when n-ZnO was applied after heat stress. The results further enlightened that 90 mg L-1 n-ZnO better prevented the heat stress-mediated membrane damage, lipid peroxidation and oxidative stress by stimulating antioxidant systems and enhancing osmolyte contents in both BHS and AHS. Although, application of 90 mg L-1 n-ZnO in BHS was more effective in averting heat-induced damages and maintaining better plant growth and morpho-physiological attributes compared to AHS. Conclusively, foliar application of n-ZnO can be encouraged as an effective strategy to protect alfalfa from heat stress damages while minimizing the risk of nanoparticle transmission to environmental compartments, which could happen with soil application.


Assuntos
Nanopartículas , Óxido de Zinco , Antioxidantes/metabolismo , Ecossistema , Medicago sativa , Plântula , Óxido de Zinco/química , Óxido de Zinco/toxicidade
6.
Front Plant Sci ; 13: 842349, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251111

RESUMO

Gradually rising atmospheric temperature is the vital component of the environment, which is anticipated as the riskiest abiotic stress for crop growth. Nanotechnology revolutionizing the agricultural sectors, notably, zinc oxide nanoparticles (nano-ZnO) has captured intensive research interests due to their distinctive properties and numerous applications against abiotic stresses. Mungbean (Vigna radiata L.), being a summer crop, is grown all over the world at an optimum temperature of 28-30°C. A rise in temperature above this range, particularly during the flowering stage, can jeopardize the potential performance of the plant. Hence, an outdoor study was performed to evaluate the effect of multiple suspensions of nano-ZnO (0, 15, 30, 45, and 60 mg l-1) on physicochemical attributes and yield of mungbean crop under heat stress. Heat stress was induced by fine-tuning of sowing time as: S1 is the optimal sowing time having day/night temperatures <40/25°C and S2 and S3 are late sown that were above >40/25°C during the flowering stage. In vitro studies on Zn release from nano-ZnO by inductively coupled plasma mass spectroscopy (ICPMS) disclosed that the Zn release and particles uptake from nano-ZnO were concentration-dependent. Exogenous foliar application of nano-ZnO significantly upstreamed the production of antioxidants and osmolytes to attenuate the shocks of heat stress in S2 and S3. Likewise, nano-ZnO substantially rebated the production of reactive oxygen species in both S2 and S3 that was associated with curtailment in lipid peroxidation. Adding to that, foliar-applied nano-ZnO inflates not only the chlorophyll contents and gas exchange attributes, but also the seeds per pod (SPP) and pods per plant (PPP), which results in the better grain yield under heat stress. Thus, among all the sowing dates, S1 statistically performed better than S2 and S3, although foliar exposure of nano-ZnO boosted up mungbean performance under both the no heat and heat-induced environments. Hence, foliar application of nano-ZnO can be suggested as an efficient way to protect the crop from heat stress-mediated damages with the most negligible chances of nanoparticles delivery to environmental compartments that could be possible in case of soil application.

7.
Environ Sci Pollut Res Int ; 29(16): 24085-24097, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34820759

RESUMO

The effects of exogenous ascorbic acid (AsA) on the growth parameters, nitrogen metabolism, energy status, and photosynthetic gas exchange in alfalfa under high-nitrate stress were studied. The seedlings treated with the control, 200 mmol L-1 nitrates (HN) or 200 mmol L-1 nitrate + 0.1 mmol L-1 AsA (HN + AsA), were sampled on days 0 and 10 after treatments. AsA was sprayed on the leaves, while HN was conducted by watering. Both of them were performed once every other day for three times in total. The results revealed that in the HN treatment, the growth parameters were the lowest; total phosphorus (TP), nitrogen-related enzyme activities, soluble protein (SP), adenosine triphosphate (ATP), and energy charge (EC) were reduced; and photosynthetic rate (Photo), conductance to H2O (Cond), transpiration rate (Trmmol), instantaneous water use efficiency (WUE), and apparent CO2 use efficiency (CUE) were also inhibited; and total nitrogen (TN), nitrate-nitrogen (NO3¯-N), ammonium-nitrogen (NH4+-N), adenosine diphosphate (ADP), adenosine monophosphate (AMP), and intercellular CO2 concentration (Ci) were increased compared with the control. However, these parameters changed conversely in the HN + AsA treatment. In addition, there was a good curve regression equation relationship between TN and NO3¯-N, TN and NH4+-N, NO3¯-N and NH4+-N, respectively. It indicates that AsA improves the growth parameters, nitrogen-related enzyme activities, energy metabolism, and photosynthesis, whereas it inhibits the toxicity of excess NO3¯-N and NH4+-N accumulations, thereby promoting the growth of alfalfa under high-nitrate stress. These metabolisms are closely related to each other during the regulatory process in alfalfa. Hence, AsA has potential to be applied to improve the growth of alfalfa under high-nitrate stress.


Assuntos
Nitratos , Nitrogênio , Ácido Ascórbico/farmacologia , Medicago sativa/metabolismo , Nitratos/metabolismo , Nitrogênio/metabolismo , Fotossíntese
8.
Chemosphere ; 290: 133368, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34933027

RESUMO

Although the widespread use of nanoparticles has been reported in various fields, the toxic mechanisms of molecular regulation involved in the alfalfa treated by nanomaterials is still in the preliminary research stage. In this study, Bara 310 SC (Bara, tolerant genotype) and Gold Empress (Gold, susceptible genotype) were used to investigate how the leaves of alfalfa interpret the physiological responses to graphene stress based on metabolome and transcriptome characterizations. Herein, graphene at different concentrations (0, 1% and 2%, w/w) were selected as the analytes. Physiological results showed antioxidant defence system and photosynthesis was significantly disturbed under high environmental concentration of graphene. With Ultra high performance liquid chromatography electrospray tandem mass spectrometry (UPLC-ESI-MS/MS), 406 metabolites were detected and 62/13 and 110/58 metabolites significantly changed in the leaves of Gold/Bara under the 1% and 2%-graphene treatments (w/w), respectively. The most important metabolites which were accumulated under graphene stress includes amino acids, flavonoids, organic acids and sugars. Transcriptomic analysis reveals 1125 of core graphene-responsive genes in alfalfa that was robustly differently expressed in both genotypes. And differential expression genes (DEGs) potentially related to photosynthetic enzymes, antioxidant enzymes, amino acids metabolism, and sucrose and starch metabolic which finding was supported by the metabolome study. Gold was more disturbed by graphene stress at both transcriptional and metabolic levels, since more stress-responsive genes/metabolites were identified in Gold. A comprehensive analysis of transcriptomic and metabolomic data highlights the important role of amino acid metabolism and nicotinate and nicotinamide metabolism pathways for graphene tolerance in alfalfa. Our study provide necessary information for better understanding the phytotoxicity molecular mechanism underlying nanomaterials tolerance of plant.


Assuntos
Grafite , Medicago sativa , Regulação da Expressão Gênica de Plantas , Grafite/toxicidade , Medicago sativa/genética , Metabolômica , Espectrometria de Massas em Tandem , Transcriptoma
9.
Front Plant Sci ; 12: 694179, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34267772

RESUMO

Melatonin is an indoleamine small molecular substance that has been shown to play an important role in the growth, development, and stress response of plants. The effects of melatonin on the morphological characteristics, mineral nutrition, nitrogen metabolism, and energy status in alfalfa (Medicago sativa L.) under high-nitrate stress were studied. The alfalfa plants were treated with water (CK), 200 mmol L-1 nitrates (HN), or 200 mmol L-1 nitrates + 0.1 mmol L-1 melatonin (HN+MT), and then were sampled for measurements on days 0 and 10, respectively. The results showed that the HN treatment resulted in a decrease in the morphological characteristics (such as shoot height, leaf length, leaf width, leaf area, and biomass), phosphorus, soluble protein (SP), nitrogen-related enzymes activities and gene relative expression, adenosine triphosphate (ATP), and energy charge (EC). It also caused an increase in nitrogen, sodium, potassium, calcium, nitrate-nitrogen ( NO 3 - -N), ammonium-nitrogen ( NH 4 + -N), adenosine diphosphate (ADP), and adenosine monophosphate (AMP). However, these parameters were conversely changed in the HN+MT treatment. Besides, these parameters were closely related to each other, and were divided into two principal components. It reveals that melatonin plays an important role in modulating the morphology, mineral nutrition, nitrogen metabolism and energy status, thereby alleviating the adverse effects of high-nitrate stress and improving the growth of alfalfa.

10.
Ecotoxicol Environ Saf ; 220: 112348, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34015633

RESUMO

The phytotoxicity of nanoparticles has attracted considerable interest, given the broad applications of nanomaterials in different fields. Alfalfa (Medicago sativa L.) is a major forage crop grown worldwide with a high protein content. The molecular regulation mechanisms involved in nanomaterial-treated alfalfa were examined in this research. In our lab, 18 cDNA libraries of Golden Empress (GE) and Bara 310SC (SC) under control (CK), middle (10 g kg-1)- and high (20 g kg-1)-graphene stress treatments were constructed in 2019. All clean reads were matched to the reference Medicago_truncatula genome, the mapping ratio was higher than 50%, and a total of 3946 differentially expressed genes (DEGs) were obtained. The number of DEGs that reflect transcriptional activity is proportional to the degree of stress. For example, 1241/610 and 1794/1422 DEGs were identified as significant in the leaves of GE/SC under mid- and high-graphene treatment, respectively. Furthermore, GO analysis of the DEGs annotated in some significant biochemical process terms included 'response to abiotic stimulus', 'oxidation-reduction process', 'protein kinase activity', and 'oxidoreductase activity'. KEGG pathway analysis of the DEGs revealed strongly mediated graphene-responsive genes in alfalfa mainly linked to the 'biosynthesis of amino acids', 'isoflavonoid biosynthesis', 'linoleic acid metabolism', and 'phenylpropanoid biosynthesis' pathways. In addition, hundreds of DEGs, including photosynthetic, antioxidant enzyme, nitrogen metabolism, and metabolic sucrose and starch genes, have been identified as potentially involved in the response to graphene. Physiological findings revealed that enzymes related to the metabolism of nitrogen play a crucial role in the adaptation of graphene stress to alfalfa. Ultimately, in response to graphene stress, a preliminary regulatory mechanism was proposed for the self-protective mechanism of alfalfa, which helps to explain the phytotoxicity of the molecular mechanism of nanoparticle-treated crops.


Assuntos
Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/efeitos dos fármacos , Grafite/toxicidade , Medicago sativa/efeitos dos fármacos , Nanopartículas/toxicidade , Transcriptoma/efeitos dos fármacos , Medicago sativa/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo
11.
PLoS One ; 16(4): e0250926, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33914821

RESUMO

Alfalfa (Medicago sativa L.) is an important legume crop for forage, agriculture, and environment in the world. Ascorbic acid (AsA) plays positive roles in plants. However, its effects on germination and salt-tolerance of alfalfa are unknown. The effects of AsA applications on seed germination and seedling salt-tolerance of alfalfa were investigated. The results revealed that 0.1 and 1 mmol L-1 of exogenous AsA increased germination, amylase, and protease, as well as seedling length, fresh weight (FW), dry weight (DW), and endogenous AsA both in the shoots and roots, except that 1 mmol L-1 AsA reduced the activities of α-amylase, ß-amylase and protease on day 3. However, 10 and 100 mmol L-1 AsA inhibited these parameters and even caused serious rot. It indicates that 0.1 mmol L-1 AsA has the optimal effects, whereas 100 mmol L-1 AsA has the worst impacts. Another part of the results showed that 0.1 mmol L-1 AsA not only enhanced stem elongation, FW and DW, but also increased chlorophyll and carotenoids both under non-stress and 150 mmol L-1 NaCl stress. Furthermore, 0.1 mmol L-1 AsA mitigated the damages of membrane permeability, malondialdehyde, and excessive reactive oxygen species (ROS) and ions both in the shoots and roots under 150 mmol L-1 NaCl stress. Hence, 0.1 mmol L-1 AsA improves growth and induces salt-tolerance by inhibiting excessive ROS, down-regulating the ion toxicity and up-regulating the antioxidant system. The principal component analysis included two main components both in the shoots and roots, and it explained the results well. In summary, the optimum concentration of 0.1 mmol L-1 AsA can be implemented to improve the seed germination and seedling growth of alfalfa under salt stress.


Assuntos
Amilases/metabolismo , Ácido Ascórbico/farmacologia , Medicago sativa/crescimento & desenvolvimento , Peptídeo Hidrolases/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação/efeitos dos fármacos , Medicago sativa/efeitos dos fármacos , Medicago sativa/metabolismo , Proteínas de Plantas/metabolismo , Análise de Componente Principal , Espécies Reativas de Oxigênio/metabolismo , Tolerância ao Sal , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
12.
Front Plant Sci ; 12: 800783, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35126425

RESUMO

Switchgrass, a C4 plant with high potential as a bioenergy source, is unsteady in yield under sub-optimal conditions. Bacteria containing 1-aminocyclopropane-1-carboxylate synthase (ACC) deaminase can promote plant growth. We isolated bacteria containing ACC deaminase activity from switchgrass rhizosphere using an orthogonal matrix experimental design with four factors (bacterial liquid concentration, bacterial liquid treatment time, nitrogen content, and NaCl) to quantitatively investigate the effects and pairwise interactions on the seedling growth. Pseudomonas sp. Y1, isolated from the switchgrass cv. Blackwell rhizomes was selected. We optimized the inoculation bacterial concentration, treatment time, NaCl, and nitrogen concentration for the seedling growth. The optimal bacterial concentration, treatment time, NaCl, and nitrogen content was 0.5-1.25 OD at 600 nm, 3 h, 60-125 mM and 158 mg L-1, respectively. Pseudomonas sp. Y1 significantly increased the total root length, root surface, shoot length, and fresh and dry weight through an effective proliferation of the number of first-order lateral roots and root tips. This indicated that Pseudomonas sp. Y1 has a higher potential to be used as a plant growth-promoting rhizobacteria bacteria.

13.
Front Microbiol ; 12: 771361, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095791

RESUMO

Alfalfa (Medicago sativa L.) is one of the most widely cultivated forage crops in the world. China is the second largest producer of alfalfa in terms of the planting area worldwide, with Gansu, Henan, Inner Mongolia, and Shaanxi provinces being the production hubs. Alfalfa viruses have been reported on a small-scale survey in some of these areas, but they have not been well characterized. In the present study, seven viruses were detected in 12 fields of 10 cities/counties of the four abovementioned provinces by high-throughput sequencing and assembly of small RNA. Their incidence, distribution, and genetic diversity were analyzed by enzyme-linked immunosorbent assay, polymerase chain reaction (PCR)/reverse transcription-PCR and clone sequencing. The results showed that alfalfa mosaic virus (AMV), pea streak virus (PeSV), lucerne transient streak virus (LTSV), alfalfa dwarf virus (ADV), Medicago sativa alphapartitivirus 1 (MsAPV1), MsAPV2, and alfalfa leaf curl virus (ALCV) were the main viruses infecting alfalfa in four examined provinces. AMV and MsAPV1 had the highest incidences in all 4 provinces. SDT analysis of the 7 viruses isolated in China revealed a highly conserved among AMV, LTSV, ADV, MsAPV1, MsAPV2, and ALCV, but the sequence was a high variation between China isolates to abroad isolates in PeSV, ADV, and ALCV. To our knowledge, this is the first report of ADV in Inner Mongolia and Gansu, ALCV in Inner Mongolia, MsAPV1 and MsAPV2 in all 4 provinces, and PeSV and LTSV in China. These findings provide a basis for future research on the genetic evolution of alfalfa viruses in China and on strategies to prevent diseases in alfalfa caused by these viruses.

14.
Sci Rep ; 9(1): 17976, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31784680

RESUMO

Western wheatgrass (Pascopyrum smithii Rydb.) is an important cool-season forage and turfgrass. However, due to seed dormancy and poor seedling vigor, it is difficult to develop high seed yield production systems, and assessing these components in response to seed yield. Based on multifactor orthogonally designed field experimental plots under various field management regimes, the effects of numbers of fertile tillers m-2 (Y1), spikelets/fertile tiller (Y2), florets/spikelet (Y3), seed numbers/spikelet (Y4), and seed weight (Y5) on seed yield (Z) were determined over three successive years. Correlation analysis indicated that fertile tillers (Y1) was the most important seed yield component. And the biggest contribution of those five yield component is fertile tillers (Y1), followed by seed numbers/spikelet (Y4), spikelets/fertile tiller (Y2), florets/spikelet (Y3) and seed weight (Y5), respectively. By using ridge regression analysis, we have developed an accurate model of seed yield with its five components. Finally, the results of synergism and antagonism among these yield components on seed yield showed that fertile tillers and seed numbers/spikelet had an antagonistic effect on seed yield. Therefore, selection for high seed yield by direct selection for large values of fertile tillers and seed numbers/spikelet would be the most effective breeding strategy for western wheatgrass.


Assuntos
Poaceae/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Algoritmos , Modelos Biológicos , Dormência de Plantas , Estações do Ano
15.
PLoS One ; 14(6): e0218599, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31242244

RESUMO

It is crucial for agricultural production to identify the trigger that switches plants from vegetative to reproductive growth. Agricultural sustainability in semiarid regions is challenged by nitrogen (N) fertilizer overuse, inadequate soil water, and heavy carbon emissions. Previous studies focused on the short-term effects of a single application of N and water but have not investigated the long-term effects of different irrigation and N fertilizer regimens on crop yields and yield components. N application is routinely coupled with water availability, and crop yields can be maximized by optimizing both. We examined the growth of western wheatgrass [Pascopyrum smithii (Rydb.) Á. Löve], a temperate-region forage and turf grass, using multiple different combinations of N fertilizer [(NH4)2·CO3] and irrigation levels over 3 years to determine optimal field management. We conducted multifactorial, orthogonally designed field experiments with large sample sizes, and measured fertile tillers m-2 (Y1), spikelets/fertile tillers (Y2), florets/spikelet (Y3), seed numbers/spikelet (Y4), seed weight (Y5), and seed yield (Z) to study factors associated with the switch between vegetative and reproductive growth. Fertilization had a greater effect on seed yield and yield components than irrigation. Y1 had the strongest positive effect on Z, whereas Y5 had a negative effect on Z. Irrigation and fertilization affected Z, Y1, and Y5. Fertilizer concentrations were positively correlated with Z, Y1, and Y5, whereas irrigation levels were negatively correlated. The ridge regression linear model results suggested N application rate and irrigation had antagonistic effects on Y1 (X3 = 867.6-4.23×X2; R2 = 0.988, F = Infinity, P<0.0001). We conclude that the optimal amount of N fertilizer and irrigation was 156 kg ha-1 + 115 mm for seed yield, 120 kg ha-1 + 146 mm for spikelets/fertile tillers, and 108 kg ha-1 + 119 mm for seed numbers/spikelets. These results will improve yield and reduce agricultural inputs for P. smithii in semiarid and arid regions, thereby reducing fertilizer pollution and conserving water.


Assuntos
Irrigação Agrícola , Produção Agrícola , Fertilizantes , Nitrogênio , Sementes , Algoritmos , Biomassa , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...